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Abstract 

 Combined with an approximation suggested by Taylor and Lipson for the third-order 

correlation function and the translational invariance approximation, the BGY equation is used to 

calculate the conformation and thermodynamic properties of a diblock square-well copolymer or 

a random square-well copolymer. The BGY results for the end-to-end distribution of copolymers 

are in good agreement with Monte Carlo simulations when the attractive interaction between 

segments is not strong. BGY calculations semi-quantitatively predict the conformations of a 

copolymer when the attractive interaction is strong. At low temperatures, one block comprised of 

attractive segments of the diblock copolymer collapses while the other block, comprised of 

repulsive segments, dominates the scaling behavior. The end-to-end-distance distribution function 

for a random copolymer is similar to that for an AB…AB copolymer when the temperature is at 

least moderate.  

 

I. INTRODUCTION 

 Folding and unfolding (denaturing) of proteins is a well-known but incompletely understood 

phenomenon. The simplest model to describe the denaturation of proteins, the coil-globule 
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transition of a polymer, has received much attention in the past two decades.1 A single 

homopolymer chain in dilute solution shows three types of configuration depending on the 

solvent:2-5 conformations of a single polymer chain are classified as expanded in a good solvent, 

ideal (Gaussian-chain-like) in a theta solvent, and compact in a poor solvent. When the solvent 

changes from good to poor, a coil-to-globule transition occurs if the molecular weight of the 

polymer is large. The globule state can be divided into two subclasses: the random globule and 

the frozen globule (at relatively lower temperature) mimic the folding of a protein.1 Although 

there are some subtle, unsolved problems (e.g. the logarithmic correction to the scaling law at the 

theta temperature6-8), the conformations of a homopolymer are relatively simple and well 

understood.9-15 It is more difficult to describe the complex configuration of a copolymer, even for 

the simplest case where the copolymer contains only two kinds of segments.16, 17 However, for 

understanding proteins, a copolymer provides a better simplified model than a homopolymer. In 

this work we present some theoretical results for the conformation of a block or random 

copolymer in dilute solution.  

 For a theoretical study of polymer collapse, the most widely used theory is the self-consistent 

field theory (SCF) of Edwards18, 19 that leads to a diffusion or Schrödinger-like equation. In 

self-consistent field theory, the polymer is modeled as an elastic chain with interactions between 

segments. A hierarchy of Green functions is obtained. Approximations are needed to truncate the 

hierarchy. Using renormalization-group theory and diagram expansion, self-consistent field 

theory is able to describe the coil-globule transition of a hompolymer close to the theta point. 9 

With the help of a saddle-point approximation, self-consistent field theory can describe the 

adsorption of random copolymers on a solid surface.20 Because the self-consistent field theory is 

concerned with a very long polymer, it omits details of the interactions between segments and 

therefore can only describe the globule state close to the theta point.  
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An alternative to SCF theory is to take advantage of the theory of spin glasses.21, 22 With the 

help of the replica trick and replica symmetry breaking,23, 24 we can find the frozen globule state 

of a random copolymer averaged over all possible sequences of the segments.25-28 Unlike the 

random globule, the state of the frozen globule is usually unique and corresponds to the global 

minimum of the free energy. Therefore, it can describe the folding state of a protein and 

encoding.28 For a fixed-sequence random copolymer, Allegra and Gonazzoli16, 17, 29, 30 developed 

a free-energy model that shows both the random and frozen globule states for random 

copolymers with fixed sequences of segments.  

For a more realistic segment-segment potential model, (e.g. a square-well chain or a 

Lennard-Jones chain), the integral-equation theory of liquids is best.10-13, 31, 32 An advantage of 

integral-equation theory is that its results can be compared with Monte Carlo (MC) simulations. 

Based on a new version of the Kirkwood superposition approximation, Eu and Gan12, 13 derived a 

hierarchy of correlation functions for molecular liquids that predict the scaling law when the 

temperature is not very low. Another well-known integral equation for a single polymer chain is 

the classic Born-Green-Yvon (BGY) equation.33, 34 After introducing some approximations to 

truncate the infinite hierarchy, Taylor and Lipson10 showed that the BGY equation provides good 

agreement with the scaling law for a homopolymer with repulsion interactions only. This theory 

gives a semi-quantitative description of the collapse of a square-well chain. Compared to Eu and 

Gan’s theory, BGY provides a simpler mathematical expression. For a single chain in the bulk, 

because only a first-order differential equation is used, BGY avoids the difficulty of convergence 

for finding the roots of the non-linear equations in Eu and Gan’s theory.  

 In this work, we use the BGY integral equation to investigate the coil-globule transition of a 

diblock copolymer and a random copolymer. Our results are a direct consequence of the work for 

homopolymers in Reference 10. In Section II, we introduce briefly the BGY integral-equation 
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theory for a single copolymer and for a random copolymer. As shown by Taylor and Lipson,10 

BGY cannot predict the frozen globule state of a square-well chain. Therefore, we focused on the 

coil-globule transition. In Section III, we introduce the model and an MC simulation method. In 

Section IV, we calculate conformation properties for a diblock copolymer and for a random 

copolymer comprised of two kinds of segments.  

 

II. THEORY 

IIa. BGY Equation for a Copolymer with a Fixed Sequence 

We apply Taylor and Lipson’s work10 for a homopolymer chain to a copolymer chain. The 

polymer is modeled as a freely jointed chain whose segments are hard spheres with short-range 

attraction between non-bonded segments. The segments are not necessarily the same. The solvent 

is a continuous medium; interactions between solvent and polymer are integrated into the 

effective interaction between segments. The canonical partition function of a single chain 

containing  segments is given by: N
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where  is the volume of the system; subscripts  are the ordinal number of the segments; 

 is the non-bonding interaction energy between segments  and ;  is the Boltzmann 

factor for bonding energy between segments  and . The Boltzmann factor for bonding 

energy is given by: 
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where  is the Dirac function and  is the diameter of the hardcore of segment i. The factor δ iσ
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where  is the distance between segments  and l . Due to the connection between segments, 

 vanishes when  is larger than the entire length of all bonds between segments  and 

. The intra-molecular distribution function satisfies the normalization condition: 

klr k

)r r k

 .                (4) 1)(4d 2 =∫ rwrr klπ

Calculating the gradient of the intra-molecular distribution function in Eq. (3) with respect to the 

position vector of the segment , we obtain the BGY equation of a single chain: l
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where  is the third-order intra-molecular distribution function among segments  and l . 

In this work, we focus on the end-to-end distribution function . For the end-to-end 

distribution function, Eq. (5) becomes: 
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Eq. (6) is used in Taylor and Lipson’s work.10 Eq. (6) concerns the gradient with respect to the 

position vector of segment 1. We also have another equation similar to Eq. (6) for the gradient 

with respect to the position vector of the last segment . These two equations are equivalent 

because the BGY equation is rigorous. After the approximation Eq. (9) is introduced, the two 

versions of Eq. (6) are still equivalent for a homopolymer but not for a copolymer. To make the 

approximation described later consistent with the BGY equation, we introduce two variables to 

N

 5 



replace the position vectors of end segments and transform the original BGY equation Eq. (6). 

The two variables are:  

  or .            (7) 
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We calculate the gradient of Eq. (3) with respect to  rather than with respect to  or r  

and obtain: 
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Eq. (8) is not useful unless we know the third-order distribution function. To calculate the 

third-order distribution function, we use the approximation suggested by Taylor and Lipson10 

with a small change suitable for a copolymer: 
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where  is a constant to make the distribution function  ( 4N ) vanish when the 

chain is fully stretched i.e. at . It can be shown that Eq. (9) is exact for any trimer 

in the bulk, i.e. 
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Substituting Eqs. (2) and (10) into Eq. (8), after some rearrangement,35 Eq. (8) becomes 
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Eq. (11) concerns the intra-molecular distribution function. Rigorously, the intra-molecular 

distribution function should be found by solving Eq. (5). However, for a chain of  segments, 

there are  intra-molecular distribution functions. It is tedious and 

computer-time-consuming to solve these differential equations simultaneously. For simplicity, we 

use an assumption similar to translational invariance of the intra-molecular distribution 

function:

N

N

)( 2NO

13 we assume that the intra-molecular density distribution function of a -segment 

chain  is equal to the end-to-end distribution function of a )(rwkl 1+− lk -segment chain. 

Since our target is a copolymer, the sequence of this 1+− lk -segment chain should be the same 

as that of the corresponding part of the target chain. Eq. (11) is a first-order ordinary differential 

equation that can be integrated directly. The initial condition, i.e. the contact value of the 

distribution function, is determined by the normalization condition Eq. (4). Because Eq. (11) is 

linear, we can write the analytic solution. If the hardcore is the same for all segments, then there 

exists a solution: 
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where  stands for the last three term in Eq. (11) and . The end-to-end 

distribution of a trimer can be easily obtained from Eq. (3): 
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where  is the Heaviside function. Eq. (13) can be used with Eq. (12) to calculate all 

end-to-end distribution functions of tetramers with various sequences of segments. Then, with the 

help of the end-to-end distribution functions of trimers and tetramers, we can obtain those for 

pentamers and so on.  

)(rΘ

Conformational and thermodynamic properties can be obtained from the intra-molecular 

distribution function.10 The average energy is given by: 
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The radius of gyration is given by 
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IIb. BGY Equation for a Random Copolymer 

For a random copolymer, the randomness comes from the disorder of the random sequence 

of different segments. The free energy and the partition function of a random copolymer are 
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given by: 

 
disorder
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where  is the Helmholtz free energy; the brackets F
disorder

denote the average over all 

possible sequences;  is the partition function of the random copolymer with a fixed sequence. 

To calculate the end-to-end distribution function, we separate the non-bonding interaction into 

two parts: the repulsion (rep), which is the same for all segments, and the attraction (att), which 

depends on the species of interacting pairs, i.e.  
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Since the repulsions of all segment pairs are the same, the functional derivative in Eq. (19) is 

independent of the average 
disorder

. Therefore, we can substitute Eq. (17) into Eq. (19) and 

obtain: 
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where  is the end-to-end distribution function of the random copolymer averaged over the 

sequence disorder and  is that of a fixed-sequence copolymer. The end-to-end distribution 

function  defined in Eq. (20) satisfied the BGY equation, Eq. (8). Eq. (20) shows that the 

end-to-end distribution function of a random copolymer is the average of the end-to-end 

distribution of all possible fixed-sequence copolymers. Similar statements hold for the properties 

given by Eqs. (14-16). For the Helmholtz free energy of a random copolymer, usually the replica 
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trick is used.21 However, because the randomness we consider here comes from the random 

sequences, and because we obtain the energy 
disorder

Eβ  from the correlation function of the 

random copolymer via Eq. (14), we need not use the replica trick. From the thermodynamic 

relation , we obtain: EF =∂∂ βββ /)(
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where  is the free energy of the reference system at , i.e. a hard chain. The free 

energy is useful to describe the random-globule-to-frozen-globule transition. However, 

approximations we used are only suitable for the disordered state of the polymer, we do not 

consider the coil globule-frozen globule transition in this work.  

β 0=β

 

III. MODEL AND SIMULATION 

 We consider a square-well chain copolymer. The interaction energy  between 

non-bonded segments  and  is given by: 
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The derivative of the potential with respect to  is given by: r
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When Eq. (11) is integrated, we need to know the correlation function  and how to 

calculate . The derivation of Eq. (24),  and  are given in 

the Appendix. 
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We use the Dickman-Hall algorithm36 for the canonical Monte-Carlo simulations. The 

procedure for simulation is as follows. First, the initial configuration of the copolymer is 

generated by an off-lattice self-avoiding random walk. Second, the chain is subjected to a 

“translate-jiggle” movement. A bond is chosen randomly on the chain. Then, randomly choose 

either one end (e.g. segment ) of the bond to be stationary and make the other end of the bond 

(segment ) translate a certain distance. Then, normalize the distance between these two 

segments to be the bond length, i.e. normalize  to σ . The sub-chain (segments 1, 2 … 

) that is connected to segment  is subjected to the same translation as that for segment 

. The Metropolis algorithm is used to decide if the movement is accepted or not. Then, a 

procedure similar to moving segment  is applied repeatedly to segment  and so on 

until the end of the chain.  

i
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IV. RESULTS AND DISCUSSIONS 

 In all calculations, the copolymers are comprised of two kinds of segments. The diameters of 

hard cores of both segments are the same, i.e. σ . The well-width parameter is σσ= BA
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assumed to be constant, λ . The number of segment  in one 

molecule is denoted by . In all calculations, segment A is a hard sphere and the interaction 

between A and B is repulsive only, i.e. . Because of limited memory and computer 

time, the maximum chain length we calculated is . Taylor and Lipson

BA,,,5.1 == jiij

ABAA = εε

10−>ijβε

Bn/

∞+

BA,, =ii

∞+

BA nn /

in

An

0

0=

=N 192 10 have shown that 

the BGY equation combined with the approximations cannot predict the correct conformation of 

a homopolymer if the attractive interaction between segments is very strong. Therefore, we 

consider only cases where . We investigate how the conformation of a single polymer 

depends on the ratio . The two limiting cases, n  and , correspond, 

respectively, to two homopolymers, i.e. the hardchain (pure A) and the square-well chain (pure 

B). The results for homopolymers are calculated in Reference 10. Here we duplicated plots for 

homopolymers in Reference 10 to verify the correctness of our computer program and to show 

how the ratio  influences the conformation of a copolymer. We found that the consistency 

between the simulation and the theory declines gradually with decreasing . The two 

limiting cases  and  can be used as a criterion. Since the two limiting cases 

have been investigated thoroughly in Reference 10 for the theory and in Reference 15 for Monte 

Carlo simulation, we did not perform a comparison between the theory and the Monte Carlo 

simulation over the whole space of the parameters. Instead, we just compare several cases as 

examples. For random copolymers, we assume that the randomness arises from the random 

sequences. We assume that the probabilities of all possible sequences are the same. We calculate 

the conformational properties for all possible sequences and then obtain the average according to 

Eq. (20).  

0/ =BA n

BA nn /

/ BA nn =

 Figs. 1a and 1b show the end-to-end distribution function for five diblock 64-mers. In Fig. 1a 
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the energy parameter is . As expected, the end-to-end distribution function 

gradually expands with increasing fraction of segment A. Comparing to the MC data, for a 

symmetric diblock copolymer or a hardsphere chain, the BGY results are consistent with 

Monte-Carlo simulation. When the attractive interaction is strong, BGY overestimates the 

collapse of the polymer. The larger the attractive interaction, the larger the deviation, as expected, 

from the approximation Eq. (9). When the polymer collapses, the volumetric repulsion plays a 

more important role and the approximation Eq. (9) is not suitable.  

5.0BB −=βε

Fig. 2 shows how the radius of gyration for a 32-mer diblock copolymer depends on the 

reduced temperature T  defined by the reciprocal of reduced attraction energy between 

segments B, i.e . In this case, because only one block of the diblock copolymer is 

comprised of attractive segments, the collapse of the chain applies only to this attractive block. 

When the radius of gyration changes rapidly, the temperature corresponds to the collapse 

temperature. As expected, if the fraction of segment B increases, the corresponding collapse 

temperature rises.  

*

/1− BB
* βε=T

Fig. 3 shows how the radii of gyration of various diblock copolymers depend on the chain 

length with energy parameter . Fig. 4 shows how the scaling parameter  (in the 

scaling law ) depends on the fraction of segment A. Since the chain length (up to 192) 

in the calculation is not long enough, the scaling parameter in Fig. 4 provides only an 

approximation. Here a subtle problem arises. As we can expect the scaling law certainly depends 

on the sequence of the segment. If segment A and segment B distribute uniformly on the polymer, 

e.g. AABAAB…AAB, the scaling parameter  will fall between the two limiting cases i.e. a 

hard chain and a square-well chain. However for a diblock copolymer, we think that the attractive 

segments (B) on one block tend to aggregate together and repulsive segments (A) on the other 

1BB −=βε ν2

ν22 ~ NRg

ν2
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block dominate the scaling behavior. Thus the scaling parameter should be the same as that of the 

homopolymers with weak attraction ( ) when the chain length is very long. 

However in this work, the chain length is not long enough to verify these intuitive explanations. 

For a diblock copolymer, at the chain length of 192, the scaling behavior is still not obvious, 

while for a homopolymer the scaling behavior appears at the chain length around 40.

BA
22 ,BA νννν >>> NN

1

2.0− 1−

10  

 Fig. 5 shows the end-to-end distribution function of short random copolymers. The ratio of 

two different segments is . Fig. 5 is for a random 4-mer. The energy parameter is 

. Since , sequences ABBA and AABB actually are homopolymers. We 

didn’t use the exact results

: BA =nn

08BB −=βε AB =βε

10, 11 but Monte Carlo simulation to compare with the theory. The 

approximation suggested by Taylor and Lipson and the translational invariance approximation 

work equally well for a 4-mer copolymer as it did for a 4-mer homopolymer.10 For any sequence 

of a 4-mer, BGY combined with Taylor and Lipson’s approximation10 is in good agreement with 

Monte Carlo simulations even if the attractive interaction is very strong.  

Fig. 6a shows the end-to-end distribution function of a random half A-half B 8-mer. The 

energy parameter is . Such a random copolymer has 38 possible sequences. Monte 

Carlo simulations are performed for each sequence and then Eq. (20) is used for average. 

Although the BGY result for a random 8-mer is in good agreement with MC data, it is not so 

good for some fixed sequence copolymer as shown in plot 1 in Fig. 6a. Fig. 6b shows the 

end-to-end distribution function of a random copolymer with a fixed sequence generated 

randomly by computer. The sequence is: AAABBABBAABAABAAABBBBBAAABBABBAB. 

The energy parameters are  or . The results are similar to those for diblock 

copolymers. When the attractive interaction between two segments B increases, the polymer 

shrinks. When the attraction is not very strong, BGY-equation results are consistent with MC 

1BB −=βε

βεBB =

 14 



simulations. As shown by Taylor and Lipson,10 BGY equation is in good agreement with MC 

results for short square-well homopolymer. However, for long chains, when the attractive energy 

is strong, due to the approximation Eq. (9) and the translational invariance approximation, the 

deviation is large. This problem is more serious for a random copolymer. Figs. 6a and 6b shows 

that the theory qualitatively reflects the effect of sequences when the attraction is not weak.  

 Fig. 7 shows how the end-to-end distribution function of random copolymers depends on the 

attractive energy. The chain length is 16 and the ratio of two different segments is . 

The energy parameters are  or . The dashed line shows the end-end distribution 

function of an AB…AB copolymer. The squares show the end-end distribution of an AB diblock 

copolymer. The chain shrinks when the attractive energy increases. The end-to-end distribution 

function of random copolymers is similar to that of an AB…AB fixed-sequence copolymer if the 

attractive energy is moderate. This implies that when the polymer is not in a very compact 

collapse state, the thermodynamic properties of the random copolymer are similar to those of a 

copolymer with the fixed periodic sequence and the same ratio of two different segments. When 

the attractive interactions are strong, e.g. when , due to the collapse of the polymer, 

the conformation of the random copolymer is different from but still to some degree similar to 

that of an AB…AB copolymer. However the conformation of a diblock copolymer is different 

from those of a random or AB…AB copolymer. For random copolymers or AB…AB copolymers, 

configurations change largely with changing attractive interactions, while for a diblock 

copolymer, such change is not so obvious. A diblock copolymer does not shrink as much as a 

random copolymer or AB…AB copolymer. This verifies to some degree our intuitive explanation 

for Figs. 3 and 4.  

1: BA =nn

1BB −=βε 2−

2BB −=βε

 Fig. 8 shows how the radius of gyration for a random 12-mer depends on the reduced 
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temperature . The ratio of two different segments is . The interactions between 

two segments A and between segments A and B are only repulsive, i.e. . When the 

radius of gyration changes rapidly, the temperature corresponds to the collapse temperature. 

Similar to Fig. 7, the conformation of a random copolymer is similar to that of an AB…AB 

copolymer but not to a diblock copolymer. The collapse of the copolymer with uniformly 

distributed segments is stronger than those with other sequences.  

*T 1: BA =nn

0ABAA == εε

 

V. CONCLUSION 

To calculate the conformation properties and the thermodynamic properties for a diblock 

square-well copolymer or for a random square-well copolymer, we use the BGY equation 

combined with an approximation suggested by Taylor and Lipson for the third-order correlation 

function10 and the translational invariance approximation.13 The BGY results for the end-to-end 

distribution of a copolymer are in good agreement with Monte Carlo simulations when the 

attractive interaction between segments is not strong. BGY also semi-quantitatively predicts the 

conformations of a copolymer when the attractive interaction is strong. Due to the 

approximations, BGY overestimates the collapse when the attractive interaction is strong. 

Sequence effects on the conformation of a copolymer are qualitatively taken into account in the 

theory. Sequence effects are shown clearly in the comparison between the diblock copolymer, the 

ABAB…AB copolymer and the random copolymer. At low temperatures, when one block is 

comprised of attractive segments and the other block is only repulsions, the attractive block may 

collapse while the other block dominates the scaling behavior. However the end-to-end distance 

distribution function of random copolymers is similar to that of an AB…AB copolymer when the 

temperature is at least moderate. Thus the scaling behavior may be between two limiting cases, 
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i.e. a hardchain and a square-well chain. However, because the chain length is not long enough, 

the existence of the scaling law for a random copolymer is still not clear. Since the 

approximations we used are only suitable for a liquid-like polymer, the BGY equation cannot 

describe the frozen state of the polymer.  
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Appendix 

Derivation of Eq. (24),  and  )]()[( rurw ′−β )(λσw

 For simplicity, we omit subscripts. This omission will not give rise to ambiguity. The 

Boltzmann factor of the square-well potential, Eq. (21), is given by: 

  








>
<<−

<
=−

λσ
λσσβε

σ
β

r
r

r
ru

;1
);exp(
;0

)](exp[

)()]exp(1[)()exp(                     λσΘβεσΘβε −−−+−−= rr .     (A1) 

The derivative of the Boltzmann factor is given by: 

 .   (A2) )()]exp(1[)()exp()]([)](exp[ λσδβεσδβεββ −−−+−−=′−⋅− rrruru

Multiplying Eq. (A2) by  and integrating from  to λσ , we obtain )](exp[ ruβ −λσ +

 
)exp(1

)](exp[
βε

βε
λσβ

−−
=u .             (A3) 

Using the relationship  and Eq. (A2), we obtain Eq. (24).  )()()()( arafarrf −=− δδ

 Because of the hardcore of the segment, the end-to-end distribution function can be written 
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as: 

 ) .              (A4) ()()( σΘ −= rrwrw

For , according to Eq. (A1), we have: λσ<r

 .             (A5) )](exp[)()( rurwrw ββε −=

With the help of Eq. (24) and Eq. (A5), we have 

 ; .      (A6) )−()()()()]()[( σδσσδβ =−=′− rwrrwrurw λσ<r

Integrating Eq. (11) from  to λσ , we obtain two equations: −λσ +

 )exp(
)(
)(d)(d

)(
)(

βε
λσ
λσ

β
λσ

λσ

λσ

λσ

=⇒′−=
′

−

++

−

+

−
∫∫ w

wrrur
rw
rw         (A7) 

and 

 .    (A8) )()()(d)()(d)( λσβελσλσβ
λσ

λσ

λσ

λσ

wwwrrwrurrw ⋅=−⇒′−=′ −+
+

−

+

−
∫∫

Eqs. (A6-A8) are useful for integrating Eq. (11).  
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Captions 

 

Fig. 1a End-to-end distribution function of 64-mers with . Dots: MC data,  5.0BB −=βε

64BA =+ nn . 1. ; 2. ; 3. ; 4. ; 5. .  +∞=BA / nn 3/ BA =nn 1/ BA =nn 3/1/ BA =nn 0/ BA =nn

 

Fig. 1b End-to-end distribution function of 64-mers. . Notation as in Fig. 1a 1BB −=βε

 

Fig. 2 Dependence of the radius of gyration of 32-mer on the reduced temperature.  

BB/1* βε−=T . Notation as in Fig. 1a 

 

Fig. 3. Radius of gyration as a function of chain length with . Notation as in Fig.1a. 1BB −=βε

 

Fig. 4 The scaling parameter depends on the fraction of segment B. Chain length is up to 192. 

. 1BB −=βε

 

Fig. 5 End-to-end distribution function of 4-mers. . .  8BB −=βε 1/ BA =nn

1. Random; 2. ABBA or AABB; 3. ABAB; 4. ABBA. Dots: Monte Carlo. Lines: Theory 

 

Fig. 6a End-to-end density distribution of a random 8-mer with . 1BB −=βε

1. Fixed sequence 8-mer, BBAAAABB; 2. Random 8-mer. Line: theory. Dots: MC data. 

 

Fig. 6b End-to-end distribution function of a fixed sequence random copolymer. Dots: MC data. 
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1. ; 2. . 1BB −=βε 2.0BB −=βε

 

Fig. 7 End-to-end distribution function of random copolymers.  

1. ; 2. . Solid lines: BGY for random copolymer. Dashed lines: BGY for 

AB…AB copolymer. Dots: MC for AB…AB copolymer. Squares: BGY for diblock copolymer. 

2BB −=βε 1BB −=βε

 

Fig. 8 Dependence of the radius of gyration on the reduced temperature. . BB/1* βε−=T

1. Random; 2. AB…AB copolymer; 3. Diblock copolymer. Line: BGY for random copolymer. 

Dots: BGY for an AB…AB copolymer. 
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Fig. 1a J. Cai, J. Chem. Phys. 
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Fig. 1b J. Cai, J. Phys. Chem.  
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Fig. 2 J. Cai, J. Phys. Chem.  
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Fig. 3 J. Cai, J. Chem. Phys.  
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Fig. 4 J. Cai, J. Chem. Phys.  
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Fig. 5 J. Cai, J. Chem. Phys.  
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Fig. 6a J. Cai, J. Chem. Phys.  
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Fig. 6b J. Cai, J. Chem. Phys. 
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Fig. 7 J. Cai, J. Chem. Phys.  

 

 

 

0.0

0.1

0.2

0.3

0.4

0.5

1 4 7
r /σ

4 π
r2 w

(r
)

1

2

10

 
 

 

 31 



Fig. 8 J. Cai, J. Chem. Phys.  
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